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The reporting of Uequiv and its standard uncertainty

has a chequered history. In spite of the recommenda-

tion of the IUCr Commission on Journals that

authors use the de®nition of Uequiv of their own

choice, possibly without standard uncertainties, there

still seems to be some confusion amongst referees

and editors about the status of this derived

parameter. It is shown that neither of the common

de®nitions are very useful, and that the standard

uncertainty computed from the re®nement normal

matrix is almost worthless. A potential alternative

derived parameter is proposed.
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1. Introduction

As coordinator for the CRYSTALS crystal-

lographic program (Watkin et al., 2000), I am

frequently asked why CRYSTALS does not

tabulate the standard uncertainties on Uequiv. It

seems that there is still some confusion

amongst referees and editors about the role

and status of Uequiv. Perhaps it would be useful

to recount its history, and speculate upon a

future role.

2. Uequiv ± its past

By 1959, determination of anisotropic

temperature factors (as they were then called)

was becoming routine, which led W. C.

Hamilton (1959) to believe that `it seems

worthwhile to de®ne an isotropic temperature

factor which we shall call equivalent to the

anisotropic components. There are a number

of situations where such a de®nition may be

convenient. If anisotropic temperature factors

have been determined and the deviations from

isotropy do not appear to be signi®cant, it

would seem wise to include in the report . . .
the values of the equivalent B's'. Hamilton

(1959) did not explain why this was wise,

though perhaps the then-common practice of

re®ning B or � made it dif®cult to identify high

ellipticity. He went on to write, `given an

anisotropic thermal motion, we de®ne the

equivalent isotropic motion as that which gives

rise to the same value . . . of the energy in the

®rst vibrational state', and showed how this

might be calculated. Willis & Prior (1975) came

to an equivalent expression, and attempts to

compute Bequiv or Uequiv became routine.

Towards the end of the 1970s, the IUCr

Commission on Journals recognized that it was

unscienti®c to publish results without some

indication of con®dence limits ± `formal esti-

mated standard deviations (e.s.d.'s) should be

quoted and their basis de®ned' (IUCr Notes

for Authors, 1978). This is the proper attitude

when reasonably applied, but unfortunately

unreasonable applications crept in. One of

these was the requirement for e.s.d.'s (as they

were then called) to be computed for Uequiv ±

`all measured or derived quantities which are

of importance . . . are required to be accom-

panied by their standard deviations. The value

of such quantities without estimated standard

deviations is regarded as being suf®ciently ill-

de®ned as not to warrant publication' (IUCr

Commission on Journals, 1979). This led to

much discussion and lively debate. For a start,

many people did not realize that there were at

least two de®nitions of Uequiv ± the geometric

(Ugeom) and the arithmetic (Uarith) means of

the principal components (U i) of the aniso-

tropic temperature factor (U ij). These two

®gures are the same for a spherical ellipse, but

show quite different properties as the ellipse

becomes more eccentric. For example, the

arithmetic mean may not reveal that one

component has re®ned to a negative value.

They also have different physical interpreta-

tions. Hamilton (1959) had given an inter-

pretation of the arithmetic mean, and the

geometric mean is just the radius of a sphere

1 Editorial note: The editors welcome input by e-mail
(john.helliwell@man.ac.uk or allen@ccdc.cam.ac.uk)
on these points raised by David Watkin, which will
then be included in a discussion at the next meeting
of the IUCr Journals' Commission.
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with the same volume as the ellipsoid

(Ahmed, 1979). It turns out that the arith-

metic mean can be computed without diag-

onalizing the tensor, which might account

for its early popularity. In either case, the

information in the inverse normal matrix can

be propagated through to give an s.u. on

Uequiv, and some programs do this (with

more or less disregard of the off-diagonal

terms). Schomaker & Marsh (1983) showed

how to compute correctly the s.u. on Uarith,

and how to come to a fair estimate given

only the s.u. on the principal components.

The large correlation coef®cient (ÿ1
4) had

been implied but gone unnoticed in a much

earlier paper (Cruickshank, 1956). However,

even as late as 1988 the Uequiv were still

being miscalculated (Fischer & Tillmanns,

1988), and one can only speculate on where

the s.u.'s were coming from.

At the Ottawa IUCr Computing School in

1981, Donald Sands (1982) gave a talk on

errors and error propagation. After his talk,

he was asked from the ¯oor about the

computation of the s.u. on Uequiv. His

response must certainly be remembered by

all who were there. In essence, he said that

just because one can compute a number,

that is no indication that it has any scienti®c

or statistical value. In his opinion, computing

Uequiv could be seen as analogous to trying

to compute the `average fruit' in a fruit bowl.

It makes no sense for a bowl containing

apples, oranges and bananas, and computing

an s.u. makes even less sense. We all had a

good laugh. Sadly, questions from the ¯oor

and their replies had ceased to be reported

in Computing School proceedings by 1982.

Shortly after this, the requirement for

s.u.'s on Uequiv was dropped by Acta Crys-

tallographica. Schomaker & Marsh (1983),

having shown how to compute the s.u. on

Uarith, concluded by saying, `who really cares

about Uequiv or �(Uequiv), which are next to

meaningless, if he has full information about

the U ij's'. The IUCr Notes for Authors

(1983) the same year states that `estimated

standard deviations on such equivalent

values are not required'. The IUCr

Commission on Journals (1986) noted the

two commonly used de®nitions of Uequiv and

`encouraged (authors) to use their de®nition

of choice' (with a warning about the

problem of non-orthogonal crystal systems),

provided the source was referenced, and still

without mention of the re-introduction of

standard uncertainties. Ten years later,

Trueblood et al. (1996) repeated Hamilton's

(1959) caution that an equivalent tempera-

ture factor should only be computed for

cases with minor departures from isotropic

motion but, curiously, misreported the IUCr

Commission on Journals (1986) recommen-

dations, plumping for Uarith as the `recom-

mended' de®nition, and adding

(erroneously) that Acta Crystallographica

required that published values of Uequiv be

accompanied by an evaluation of the stan-

dard deviation (now standard uncertainty).

What Sands (1982) was saying is subtle

and needs careful analysis. An average fruit

is nonsense, but if the bowl contained only

apples, the characteristics of an average

apple might have a use, and so might its

standard uncertainty. This situation had

been foreseen by Hamilton (1959) ± `if

anisotropic temperature factors have been

determined and the deviations from isotropy

do not appear to be signi®cant or be physi-

cally unrealistic...'. This is the crux of the

problem. Hamilton (1959) recognized that it

only makes sense to compute an average of

items purporting to be measures of the same

thing. For example, all the carbon±carbon

bond lengths in the Cambridge Structural

Database could be added together and their

mean value computed, but such a mean has

no physical interpretation. More simply, one

could take the mean values for sp3±sp3, sp2±

sp2 and sp1±sp1 carbon±carbon bond lengths

and their � values (International Tables of

Crystallography, 1998), and compute the

weighted mean (Taylor & Kennard, 1985).

Typical values might be: 1.53 (01), 1.31 (01)

and 1.19 (01) AÊ , respectively, with a

weighted mean of 1.34 (006) AÊ . Apparently,

we have a more precise estimate of a

physically meaningless parameter.

Over the years, the condition that the

a.d.p.'s be approximately isotropic for Uarith

to have a physical meaning has become

forgotten, and computer programs evaluate

it for all anisotropic atoms, often with an

accompanying s.u. Curiously, as shown by

Schomaker & Marsh (1983), this s.u. can be

less than that obtained by proper re®nement

of Uiso. Uequiv might be useful as a summary

of the a.d.p. of an almost isotropic atom, but

for eccentric cases it does not warrant the

honour of an s.u. propagated through from

the normal matrix. However, since the

computation is only valid for approximately

isotropic displacement parameters, one

might just as well not bother with Uequiv and

simply quote any of the U ii and their s.u.'s.

3. Uequiv ± its future

It seems that some of the contention about

what de®nition of Uequiv should be used in

publications derives from the potentially

different uses which can be made of the

quantity. For a well de®ned, well re®ned

structure, in which Hamilton's condition is

met, variations in Uequiv from atom to atom

provide a convenient approximation to the

a.d.p.'s, with anomalously large or small

Uequiv drawing the readers attention to

potentially interesting areas of the structure.

An alternative use is as a ¯ag to draw the

readers' (or referees') eye to a potentially

poorly re®ned area.

Table 1 shows how these differing Uequiv

values look for differing degrees of eccen-

tricity of the a.d.p.'s. U i are the principal

components with the 0.01 as their (invented)

s.u.'s from the least squares. The s.u. on the

Uequiv are derived analytically (falsely)

assuming no correlation between the stan-

dard uncertainties of the U i. These numbers

convince me that Uarith is not a particularly

sensitive ¯ag for highlighting anomalous

atoms, even though poorly de®ned/re®ned

atoms are often associated with highly

anisotropic displacement parameters. Ugeom

is just a little more useful, since it is sensitive

to small or negative principal components.

In neither case do the s.u.'s serve any useful

purpose. More useful might be the r.m.s.

deviations of the principal components (U i)

from Uequiv, since they would be measures of

the eccentricity of the ellipsoid, or the

reporting of Umax ÿ Umin. Here the s.u. (of

the difference) computed from the normal

matrix serves to indicate how signi®cant the

eccentricity is, and so is a statistically useful

quantity.

The problem is to devise a single para-

meter which satis®es both the need to show

the properties of well behaved atoms and at

the same time draw attention to ill-behaved

atoms. One possible candidate (with an

evident weakness) would be

U0 � Umed�Umax=Umin�: �1�
For an atom meeting Hamilton's criteria,

this will be more or less the same as Uarith or

Ugeom, but it will take on increasingly large

values for both prolate and oblate ellipsoids.

4. On the reporting of standard
uncertainties

It would lead to less correspondence for us if

CRYSTALS reported a standard uncer-

tainty on Uequiv using Schomaker & Marsh's

formulation and ignoring the sphericity

criterion. However, my feeling is that if

standard uncertainties cannot be computed

in a meaningful way, they are best left out of

papers. We appreciate the warning about

`Chi-by-eye' given by Press et al. (1992), but

somehow publication of a numerical ®gure

for a standard uncertainty seems to give it an

authority it may not merit. In any case,
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science has moved on since the IUCr

Commission on Journals (1979) insisted that

a quantity without a standard deviation did

not warrant publication, and the ranking of

observations has become respectable. In the

annual Oxford and Cambridge Boat Race,

the crew wearing light blue can generally be

distinguished from that in dark blue, without

any attempt at establishing standard uncer-

tainties. In a publication, if no standard

uncertainty is given, the reader is forced to

make up their own mind. An a.d.p. plot can

be viewed and, if necessary, the U ij can be

retrieved. The highest quality work requires

the highest quality data, the highest quality

mathematics and the highest quality scru-

tiny, but such work is not the focus of this

contribution.
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Table 1
Comparison of Uarith, Ugeom and U0 for ellipsoids of increasing eccentricity.

U1, U2 and U3 are the principal axes with their uncorrelated standard uncertainties.

U1 U2 U3 U 0 Uequiv � r.m.s.d.

0.050 0.050 0.050 0.050
0.010 0.010 0.010

0.050 0.017 0.000 Arithmetic mean
0.050 0.006 0.000 Geometric mean

0.070 0.050 0.030 0.117
0.010 0.010 0.010

0.050 0.017 0.016 Arithmetic mean
0.047 0.007 0.017 Geometric mean

0.090 0.050 0.010 0.450
0.010 0.010 0.010

0.050 0.017 0.033 Arithmetic mean
0.036 0.012 0.036 Geometric mean

0.095 0.050 0.005 0.950
0.010 0.010 0.010

0.050 0.017 0.037 Arithmetic mean
0.029 0.019 0.042 Geometric mean

0.099 0.050 0.001 4.950
0.010 0.010 0.010

0.050 0.017 0.040 Arithmetic mean
0.017 0.057 0.052 Geometric mean


